Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 955
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38613572

RESUMO

Levofloxacin (LVX) is among the fluoroquinolones antibiotics that has also been studied in vitro and in vivo for its anticancer effects. In this study, we used LVX and novel LVX thionated derivatives; compounds 2 and 3, to evaluate their antioxidant activity, aldehyde dehydrogenase (ALDH) enzymes activity inhibition, and anticancer activity. Combination treatments with doxorubicin (DOX) were investigated as well. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to determine the antioxidant activity. The NADH fluorescence spectrophotometric activity assay was used to determine the ALDH inhibitory effects. Resazurin dye method was applied for cell viability assays. Molecular Operating Environment software was used for the molecular docking experiments. Compared to ascorbic acid, DPPH assay showed that compound 3 had the highest antioxidant activity among the tested compounds with approximately 35% scavenging activity. On ALDH enzymes, compound 3 showed a significant ALDH activity inhibition compared to compound 2 at 200 µM. The IC50 values for the tested compounds were approximately 100 µM on A549 cell line, a non-small cell lung cancer (NSCLC) cell line. However, significant enhancement of cytotoxicity and reduction of IC50 values were observed by combining DOX and synergism was achieved with LVX with a combination index value of 0.4. The molecular docking test showed a minimum binding energy with a good affinity for compound 3 towards ALDH enzymes. Thionated LVX derivatives, may be repurposed for NSCLC therapy in combination with DOX, taking into account the antioxidant activity, ALDH activity inhibition, and the molecular docking results of compound 3.

2.
J Cent Nerv Syst Dis ; 16: 11795735241247810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655152

RESUMO

Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated. Therefore, this review aimed to revise the mechanistic pathway of p75NTR in epilepsy.


Roles of p75 neurotrophin receptor (p75NTR) in epilepsy: Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38537768

RESUMO

BACKGROUND: Optimal glenosphere positioning in a lateralized reverse shoulder arthroplasty (RSA) to maximize functional outcomes has yet to be clearly defined. Center of rotation (COR) measurements have largely relied on AP radiographs which allow assessment of lateralization and inferior position, but ignore scapular Y radiographs which may provide an assessment of posterior and inferior position relative to the acromion. The purpose of this study was to evaluate the COR in the sagittal plane and assess the effect of glenosphere positioning with functional outcomes utilizing a 135° inlay stem with a lateralized glenoid. METHODS: A retrospective review was performed on a prospectively maintained multicenter database on patients who underwent primary RSA from 2015-2021 with a 135° inlay stem. The COR was measured on minimum 2-year postoperative sagittal plain radiographs using a perfect-circle fit method. A perfect circle was made on the glenosphere and the center was marked. From there, four measurements were made: 1) center to the inner cortex of the coracoid, 2) center to the inner cortex of the anterior acromion, 3) center to the inner cortex of the middle acromion, 4) center to the inner cortex of the posterior acromion. Regression analysis was performed to evaluate any association between the position of the COR relative to bony landmarks with functional outcomes. RESULTS: A total of 136 RSAs met the study criteria. There was no relation with any of the distances with outcome scores (ASES, VAS). In regards to range of motion (ROM), each distance had an effect on at least one parameter. The COR to coracoid distance had the broadest association with ROM with improvements in forward flexion (FF), external rotation (ER0), and internal rotation with arm at 90° (IR90) (p = <0.001, 0.031, <0.001; respectively). The COR to coracoid distance was also the only distance to affect the final FF and IR90. For every 1 mm increase in this distance, there was a 1.8° increase in FF and 1.5° increase in IR90 (ß = 1.78; 95% CI 0.85 - 2.72, p = <0.001, ß = 1.53; 95% CI 0.65 - 2.41, p = <0.001; respectively). CONCLUSION: Evaluating the COR following RSA in the sagittal plane suggests that posteroinferior glenosphere position may improve ROM when using a 135° inlay humeral component and a lateralized glenoid.

4.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542115

RESUMO

Cluster of differentiation 44 (CD44), a cell surface adhesion molecule overexpressed in cancer stem cells, has been implicated in chemoresistance. This scoping review, following PRISMA-ScR guidelines, systematically identified and evaluated clinical studies on the impact of CD44 expression on chemotherapy treatment outcomes across various cancer types. The search encompassed PubMed (1985-2023) and SCOPUS (1936-2023) databases, yielding a total of 12,659 articles, of which 40 met the inclusion criteria and were included in the qualitative synthesis using a predefined data extraction table. Data collected included the cancer type, sample size, interventions, control, treatment outcome, study type, expression of CD44 variants and isoforms, and effect of CD44 on chemotherapy outcome. Most of the studies demonstrated an association between increased CD44 expression and negative chemotherapeutic outcomes such as shorter overall survival, increased tumor recurrence, and resistance to chemotherapy, indicating a potential role of CD44 upregulation in chemoresistance in cancer patients. However, a subset of studies also reported non-significant relationships or conflicting results. In summary, this scoping review highlighted the breadth of the available literature investigating the clinical association between CD44 and chemotherapeutic outcomes. Further research is required to elucidate this relationship to aid clinicians in managing CD44-positive cancer patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores de Hialuronatos , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Resultado do Tratamento
5.
CNS Neurosci Ther ; 30(3): e14521, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38491789

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM: Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION: There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.


Assuntos
Doença de Parkinson , Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Humanos , Ácido gama-Aminobutírico , Estudos Prospectivos , Distúrbios do Início e da Manutenção do Sono/complicações , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/complicações , Estudos Observacionais como Assunto
6.
Nat Med ; 30(4): 1023-1034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504015

RESUMO

Gastroesophageal cancer dynamics and drivers of clinical responses with immune checkpoint inhibitors (ICI) remain poorly understood. Potential synergistic activity of dual programmed cell death protein 1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) inhibition may help improve immunotherapy responses for these tumors. We report a phase Ib trial that evaluated neoadjuvant nivolumab (Arm A, n = 16) or nivolumab-relatlimab (Arm B, n = 16) in combination with chemoradiotherapy in 32 patients with resectable stage II/stage III gastroesophageal cancer together with an in-depth evaluation of pathological, molecular and functional immune responses. Primary endpoint was safety; the secondary endpoint was feasibility; exploratory endpoints included pathological complete (pCR) and major pathological response (MPR), recurrence-free survival (RFS) and overall survival (OS). The study met its primary safety endpoint in Arm A, although Arm B required modification to mitigate toxicity. pCR and MPR rates were 40% and 53.5% for Arm A and 21.4% and 57.1% for Arm B. Most common adverse events were fatigue, nausea, thrombocytopenia and dermatitis. Overall, 2-year RFS and OS rates were 72.5% and 82.6%, respectively. Higher baseline programmed cell death ligand 1 (PD-L1) and LAG-3 expression were associated with deeper pathological responses. Exploratory analyses of circulating tumor DNA (ctDNA) showed that patients with undetectable ctDNA post-ICI induction, preoperatively and postoperatively had a significantly longer RFS and OS; ctDNA clearance was reflective of neoantigen-specific T cell responses. Our findings provide insights into the safety profile of combined PD-1 and LAG-3 blockade in gastroesophageal cancer and highlight the potential of ctDNA analysis to dynamically assess systemic tumor burden during neoadjuvant ICI that may open a therapeutic window for future intervention. ClinicalTrials.gov registration: NCT03044613 .


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1 , Terapia Neoadjuvante , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Junção Esofagogástrica , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
7.
Eur J Med Res ; 29(1): 205, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539252

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease as a result of the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The fundamental features of PD are motor and non-motor symptoms. PD symptoms develop due to the disruption of dopaminergic neurotransmitters and other neurotransmitters such as γ-aminobutyric acid (GABA). The potential role of GABA in PD neuropathology concerning the motor and non-motor symptoms of PD was not precisely discussed. Therefore, this review intended to illustrate the possible role of GABA in PD neuropathology regarding motor and non-motor symptoms. The GABA pathway is essential in regulating the inhibitory tone to prevent excessive stimulation of the cerebral cortex. Degeneration of dopaminergic neurons in PD is linked with reducing GABAergic neurotransmission. Decreasing GABA activity promotes mitochondrial dysfunction and oxidative stress, which are highly related to PD neuropathology. Hence, restoring GABA activity by GABA agonists may attenuate the progression of PD motor symptoms. Therefore, dysregulation of GABAergic neurons in the SNpc contributes to developing PD motor symptoms. Besides, PD non-motor symptoms are also related to the dysfunction of the GABAergic pathway, and amelioration of this pathway may reduce PD non-motor symptoms. In conclusion, the deregulation of the GABAergic pathway in PD might be intricate in developing motor and non-motor symptoms. Improving this pathway might be a novel, beneficial approach to control PD symptoms.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Ácido gama-Aminobutírico/fisiologia , Neurotransmissores
8.
Mol Neurobiol ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367137

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3ß) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3ß in PD neuropathology, and how GSK-3ß inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3ß is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3ß in PD neuropathology is not fully clarified. Over-expression of GSK-3ß induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3ß in PD leading to progressive neuronal injury. Higher expression of GSK-3ß in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3ß inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.

9.
Eur J Med Res ; 29(1): 113, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336772

RESUMO

Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.


Assuntos
Fenofibrato , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Sistema Nervoso Central , Neurônios/patologia , Inflamação/patologia
10.
Heliyon ; 10(4): e25657, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38379986

RESUMO

Reconstruction of the depositional environment of the Paleocene-Eocene Sinjar Formation from two outcrop sections in northwestern and northeastern Iraq has been evaluated using the traditional petrographic and facies analysis supported by X-ray diffraction and scanning electron microscopy with a focus on the Paleocene-Eocene (P-E) transition boundary. To this end, major and trace elemental geochemistry was conducted and various paleoenvironmental proxies for the paleoredox, paleoclimate, paleosalinity and paleoproductivity were determined in order to evaluate the changes in widely acknowledged environmental and climatic indicators and the elemental enrichment/depletion across the P-E boundary. The redox-sensitive trace element enrichment and the ir ratios (V/V + Ni, V/Cr, and U/Th) indicate that normal oxygenated circumstances prevailed during the late Paleocene deposition, and that anoxic conditions and a gradual commencement of oxygen depletion occurred during the early Eocene deposition. The coeval increase in the P2O5 content, P/Ti, and P/Al ratios in the Eocene sediments suggests an increase in nutrients and primary productivity due to the effect of upwelling currents during early Eocene. The conditions can be verified by observing a small change in salinity levels from low to high across the P-E boundary, which can be indicated by the Sr/Ba ratios. In addition, certain minerals such as Mg-calcite, dolomite, and palygorskite are commonly present, and paleoclimatic changes can be observed across the P-E transition from arid to semiarid and then to humid conditions, which can be recorded from C-values, Sr-Cu, Rb/Sr ratios, and clay mineralogy. These conditions were noted in the Sinjar Formation, which is made up of many microfacies such as lime mudstone, wackstone, packstone, grainstone and boundstone. These microfacies were deposited in a shallow marine environment that extended from tidal flats to reef slopes, with a developed reef environment that included back reef, reef core, and fore reef environments.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38319389

RESUMO

Myrtus communis L. (Family: Myrtaceae) is naturally found in the western part of Asia, Southern Europe, and North Africa. It has been reportedly applied in pharmaceutical industry, traditional medicine, cosmetics, spices, and food. Pubmed, Google scholar, Web of Science, and Scopus were utilized to seek out relevant content concerning the therapeutic potential of M. communis. Subsequently, we conducted a review to identity noteworthy updates pertaining to M. communis. Myrtle berries, leaves, seeds, and essential oils are natural sources of several nutrients and bioactive compounds with marked health effects. The chemical analysis showed that M. communis contained oils, alkaloids, flavonoids, phenolics, coumarins, saponosides, tannins, quinines, and anthraquinones. A pharmacological investigation revealed that M. communis possessed anti-inflammatory, analgesic, antimicrobial, antiparasitic, antioxidant, antidiabetic, anticancer, antimutagenic, immunomodulatory, dermatological, cardiovascular, central nervous system, and gastrointestinal protective effects, among numerous other biological effects. This current review focused on the biochemical, pharmacological, therapeutic effects, and various biological activities of different parts of M. communis. It signifies that M. communis is a therapeutic plant with numerous applications in medicine and could be used as a drug isolate based on its safety and effectiveness.

12.
Autophagy ; : 1-10, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38346408

RESUMO

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.

13.
Ageing Res Rev ; 95: 102233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360180

RESUMO

The ketogenic diet (KD) is a low-carbohydrate, adequate protein and high-fat diet. KD is primarily used to treat refractory epilepsy. KD was shown to be effective in treating different neurodegenerative diseases. Alzheimer disease (AD) is the first common neurodegenerative disease in the world characterized by memory and cognitive impairment. However, the underlying mechanism of KD in controlling of AD and other neurodegenerative diseases are not discussed widely. Therefore, this review aims to revise the fundamental mechanism of KD in different neurodegenerative diseases focusing on the AD. KD induces a fasting-like which modulates the central and peripheral metabolism by regulating mitochondrial dysfunction, oxidative stress, inflammation, gut-flora, and autophagy in different neurodegenerative diseases. Different studies highlighted that KD improves AD neuropathology by regulating synaptic neurotransmission and inhibiting of neuroinflammation and oxidative stress. In conclusion, KD improves cognitive function and attenuates the progression of AD neuropathology by reducing oxidative stress, mitochondrial dysfunction, and enhancing neuronal autophagy and brain BDNF.


Assuntos
Doença de Alzheimer , Dieta Cetogênica , Doenças Mitocondriais , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Doenças Mitocondriais/metabolismo
14.
Ageing Res Rev ; 94: 102200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237699

RESUMO

Parkinson disease (PD) is a common brain neurodegenerative disease due to progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). Of note, the cardio-metabolic disorders such as hypertension are adversely affect PD neuropathology through exaggeration of renin-angiotensin system (RAS). The RAS affects the stability of dopaminergic neurons in the SNpc, and exaggeration of angiotensin II (AngII) is implicated in the development and progression of PD. RAS has two axes classical including angiotensin converting enzyme (ACE)/AngII/AT1R, and the non-classical axis which include ACE2/Ang1-7/Mas receptor, AngIII, AngIV, AT2R, and AT4R. It has been shown that brain RAS is differs from that of systemic RAS that produce specific neuronal effects. As well, there is an association between brain RAS and PD. Therefore, this review aims to revise from published articles the role of brain RAS in the pathogenesis of PD focusing on the non-classical pathway, and how targeting of this axis can modulate PD neuropathology.


Assuntos
Hipertensão , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/metabolismo , Peptidil Dipeptidase A/metabolismo
17.
J Neurosurg ; : 1-10, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241687

RESUMO

OBJECTIVE: Whether obesity is associated with meningioma and the impact of obesity by gender has been debated. The primary objective of this study was to investigate differences in BMI between male and female patients undergoing craniotomy for meningioma and compare those with patients undergoing craniotomy for other intracranial tumors. The secondary objective was to compare meningioma location and progression-free survival (PFS) between obese and nonobese patients in a multi-institutional cohort. METHODS: National data were obtained from the National Surgical Quality Improvement Program (NSQIP) database. Male and female patients were analyzed separately. Patients undergoing craniotomies for meningioma were compared with patients of the same sex undergoing craniotomies for other intracranial tumors. Institutional data from two academic centers were collected for all male and an equivalent number of female meningioma patients undergoing meningioma resection. Multivariate regression controlling for age was used to determine differences in meningioma location. Kaplan-Meier curves and log-rank tests were computed to investigate differences in PFS. RESULTS: From NSQIP, 4163 male meningioma patients were compared with 24,266 controls, and 9372 female meningioma patients were compared with 21,538 controls. Male and female patients undergoing meningioma resection were more likely to be overweight or obese compared with patients undergoing craniotomy for other tumors, with the odds ratio increasing with increasing weight class (all p < 0.0001). In the multi-institutional cohort, meningiomas were more common along the skull base in male patients (p = 0.0123), but not in female patients (p = 0.1246). There was no difference in PFS between obese and nonobese male (p = 0.4104) or female (p = 0.5504) patients. Obesity was associated with increased risk of pulmonary embolism in both male and female patients undergoing meningioma resection (p = 0.0043). CONCLUSIONS: Male and female patients undergoing meningioma resection are more likely to be obese than patients undergoing craniotomy for other intracranial tumors. Obese males are more likely to have meningiomas in the skull base compared with other locations, but this association was not found in females. There was no significant difference in PFS among obese patients. The mechanism by which obesity increases meningioma incidence remains to be determined.

19.
Lancet Glob Health ; 12(2): e331-e340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190831

RESUMO

The true global burden of paediatric critical illness remains unknown. Studies on children with life-threatening conditions are hindered by the absence of a common definition for acute paediatric critical illness (DEFCRIT) that outlines components and attributes of critical illness and does not depend on local capacity to provide critical care. We present an evidence-informed consensus definition and framework for acute paediatric critical illness. DEFCRIT was developed following a scoping review of 29 studies and key concepts identified by an interdisciplinary, international core expert panel (n=24). A modified Delphi process was then done with a panel of multidisciplinary health-care global experts (n=109) until consensus was reached on eight essential attributes and 28 statements as the basis of DEFCRIT. Consensus was reached in two Delphi rounds with an expert retention rate of 89%. The final consensus definition for acute paediatric critical illness is: an infant, child, or adolescent with an illness, injury, or post-operative state that increases the risk for or results in acute physiological instability (abnormal physiological parameters or vital organ dysfunction or failure) or a clinical support requirement (such as frequent or continuous monitoring or time-sensitive interventions) to prevent further deterioration or death. The proposed definition and framework provide the conceptual clarity needed for a unified approach for global research across resource-variable settings. Future work will centre on validating DEFCRIT and determining high priority measures and guidelines for data collection and analysis that will promote its use in research.


Assuntos
Cuidados Críticos , Estado Terminal , Humanos , Criança , Adolescente , Consenso , Estado Terminal/terapia , Técnica Delfos , Coleta de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA